**User's Manual** 



#### Headquarters

5th floor, Building 4, Singapore Hangzhou Science Technology Park, No. 6 street, Hangzhou Economic Development Area, Hangzhou 310018, China

### Singapore

2 Venture Drive #11-30 Vision Exchange Singapore

info@supmea.com

www.supmea.com

Supmea Automation Co.,Ltd.



# Electromagnetic flowmeter

U-LDG-SUP-C-EN1

#### Preface

- Thank you for purchasing our product.
- This manual is about the various functions of the product, wiring methods, setting methods, operating methods, troubleshooting methods, etc.
- Please read this manual carefully before operation, use this product correctly to avoid unnecessary losses due to incorrect operation.
- After you finish reading, please keep it in a place where it can be easily accessed at any time for reference during operation.

#### Note

- Modification of this manual's contents will not be notified as a result of some factors, such as function upgrading.
- We try our best to guarantee that the manual content is accurate, if you find something wrong or incorrect, please contact us.
- The content of this manual is strictly prohibited from reprinting or copying.

#### Version

U-LDG-SUP-C-EN1

#### Confirm the contents of the package

Please confirm the product and accessories after unpacking. Once the product is wrong, the quantity is wrong or there is a problem in appearance, please contact our company.

#### **Product List**

| Serial number | Item Name                 | Quantity |
|---------------|---------------------------|----------|
| 1             | Electromagnetic flowmeter | 1        |
| 2             | Manual                    | 1        |
| 3             | Certificate               | 1        |

#### Precautions

Users are expected to keep the "Product Qualification Certificate" properly and do not lose it.

# Contents

| Cha | apter 1 Overview of products                                 | . 1 |
|-----|--------------------------------------------------------------|-----|
|     | 1.1 Measuring principle of electromagnetic flowmeter         | . 1 |
|     | 1.2 Electromagnetic flowmeter structure                      | 2   |
| Cha | apter 2 Safety guidance                                      | . 3 |
|     | 2.1 Manufacturer's safety instructions                       | . 3 |
|     | 2.2 Copyright and data protection                            | . 3 |
|     | 2.3 Exemption ordinance                                      | . 3 |
|     | 2.4 Warning and symbol                                       | . 4 |
|     | 2.5 User guidance                                            | .4  |
| Cha | apter 3 Instructions for operation                           | 6   |
|     | 3.1 Checking models and specifications                       | .6  |
|     | 3.2 Install accessories                                      | . 6 |
|     | 3.3 Storage instructions                                     | . 6 |
|     | 3.4 Instructions for installation site                       | .6  |
| Cha | apter 4 Installation                                         | .8  |
|     | 4.1 Installation condition                                   | 8   |
|     | 4.2 Installation specification                               | . 9 |
|     | 4.3 Installation                                             | 11  |
| Cha | apter 5 Wiring                                               | 15  |
|     | 5.1 Wiring instructions                                      | 15  |
|     | 5.2 Remote cable                                             | 15  |
|     | 5.4 Wiring                                                   | 21  |
|     | 5.5 Earthing grounding                                       | 25  |
| Cha | apter 6 Basic operating steps (introduction of display unit) | 27  |
|     | 6.1 Panel                                                    | 27  |
|     | 6.2 Set the operation of the key                             | 27  |

| 6.3 Display interface and content                                                                                                                                                                                            | 28                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 6.4 Display mode to setup mode                                                                                                                                                                                               | 29                         |
| 6.4.1 Menu structure                                                                                                                                                                                                         | 29                         |
| Chapter 7 Description of parameters                                                                                                                                                                                          | 36                         |
| 7.1 Parameters                                                                                                                                                                                                               |                            |
| 7.2 Parameter list overview                                                                                                                                                                                                  |                            |
| Chapter 8 Practical operation                                                                                                                                                                                                | 47                         |
| 8.1 Zero setting before operation                                                                                                                                                                                            | 47                         |
| 8.2 Batch canning function                                                                                                                                                                                                   | 48                         |
| Chapter 9 Communications                                                                                                                                                                                                     | 50                         |
| 9.1 RS485 Modbus communication                                                                                                                                                                                               | 50                         |
| 9.2 Electromagnetic flowmeter uses Modbus RTU communication protocol.                                                                                                                                                        | 51                         |
| 9.3 HART                                                                                                                                                                                                                     | 53                         |
|                                                                                                                                                                                                                              |                            |
| Chapter 10 Overview                                                                                                                                                                                                          | 59                         |
| Chapter 10 Overview<br>10.1 Standard technical specification                                                                                                                                                                 | 59<br>59                   |
| Chapter 10 Overview<br>10.1 Standard technical specification<br>10.2 Performance                                                                                                                                             | 59<br>59<br>62             |
| Chapter 10 Overview<br>10.1 Standard technical specification<br>10.2 Performance<br>10.3 Normal operating environment                                                                                                        | 59<br>59<br>62<br>64       |
| Chapter 10 Overview<br>10.1 Standard technical specification<br>10.2 Performance<br>10.3 Normal operating environment<br>10.4 Measurement range                                                                              | 59<br>62<br>64<br>64       |
| Chapter 10 Overview                                                                                                                                                                                                          | 59<br>62<br>64<br>64<br>64 |
| Chapter 10 Overview<br>10.1 Standard technical specification<br>10.2 Performance<br>10.3 Normal operating environment<br>10.4 Measurement range<br>Chapter 11 Use, maintenance and fault diagnosis<br>11.1 Daily maintenance |                            |
| Chapter 10 Overview                                                                                                                                                                                                          |                            |

# **Chapter 1 Overview of products**

### 1.1 Measuring principle of electromagnetic flowmeter

The working principle of electromagnetic flowmeter mainly applies Faraday's law of electromagnetic induction. As can be seen in figure 1.1.1, the two electromagnetic coils at the upper and lower ends can detect the induced electromotive force between the left and right electrodes on the flowmeter tube wall by generating a constant or alternating magnetic field in which the conductive medium flows through the electromagnetic flowmeter. The magnitude of the electromotive force is proportional to the velocity of the conductive medium, the magnetic induction intensity of the magnetic field and the width of the conductor (the inner diameter of the tube measured by the flowmeter), and then the medium flow is calculated mathematically. The equation of induction electromotive force is:  $E=K\times B\times V\times D$ 

Where:

E-induction electromotive force.

K-instrument constant.

B-magnetic induction intensity.

V-measuring the average velocity in the cross section of the tube.

D-measure the inner diameter of the tube.



Through the flow measurement, it is found that in the process of flow, the fluid will pass through the magnetic field perpendicular to the flow direction, and the flow of the conductive fluid will produce an electric potential proportional to the average velocity. Therefore, the measured conductivity of flowing liquid is higher than the minimum conductivity of 5us/cm. The induced voltage signal is detected by two electrodes and transmitted to the converter together with the cable. After a series of analog and digital signal processing, the cumulative flow and instantaneous flow are displayed on the display screen of the frequency converter.

### **1.2 Electromagnetic flowmeter structure**

Figure 1.2.1 it can be seen that the electromagnetic flowmeter mainly consists of the following parts:



1-converter; 2-flange; 3-insulating lining.4-electrode; 5-measuring tube;6-excitation coil. 7-shell

#### Figure 1.2.1

The two main components of electromagnetic flowmeter are sensor and converter. The sensor includes a flange, a lining, an electrode, a measuring tube, an excitation coil and a sensor housing; the converter includes an internal circuit board and a converter housing. (1) Inverter: provides a stable excitation current for the sensor, amplifies the induced electromotive force generated by the sensor and converts it into a standard electrical signal or frequency signal.

In this process, the flow and parameters are displayed in real time in order to display, control and adjust the flow.

(2) Flange: connect with the process pipeline.

(3) Lining: apply a complete layer of electrical insulation and anticorrosive material on the inside of the measuring tube and the flange cover.

(4) Electrode: a pair of electrodes are installed on the wall of the measuring tube perpendicular to the magnetic force line to detect the flow signal. The electrode material can be selected according to the corrosion performance of the tested medium. In addition, 1 to 2 grounding electrodes can be installed for grounding and anti-interference of flow signal measurement.

(5) Measuring tube: the tested medium flows through the measuring tube. The parts of the measuring tube are non-magnetic stainless steel and flanges lined with insulating lining.

(6) Excitation coil: a set of coils are installed on the upper and lower sides of the measuring tube to generate the working magnetic field.

(7) Shell: both protect and seal the instrument.

# **Chapter 2 Safety guidance**

### 2.1 Manufacturer's safety instructions

Before leaving the factory, the instrument has been fully debugged and conforms to the verification regulation of JJG 1033 electromagnetic flowmeter.

In order to ensure the normal use of the instrument, please read this manual carefully before use and fully understand how to use the instrument before operation.

### 2.2 Copyright and data protection

All the contents of this document have been carefully examined but are not fully guaranteed to be in line with the latest version. The content and work of this document are protected by copyright in China, and third-party contributions are marked. If there is any reproduction, processing, dissemination and any use beyond the scope of the copyright license, it is necessary to obtain the written permission of the author or the manufacturer.

Manufacturers have always respected the copyright of others and try their best to use their own works or works that do not need to be licensed.

Personal data (such as name, address, or e-mail address) involved and used in the manufacturer's documentation, and collected as much as possible on a voluntary basis by the author. At the same time, the use of products and services is carried out as far as possible without the need to provide personal data.

We need to remind you that security vulnerabilities may occur at any time in the process of data transfer based on the Internet, such as when communicating by e-mail, and there is no complete guarantee that the data will not be accessed by third parties. Therefore, we need to issue a publication note that explicitly prohibits contact materials provided within the scope of the use of copyright notice obligations, and requires the sending of unsolicited advertising and information materials.

### 2.3 Exemption ordinance

The manufacturer is not responsible for any form of loss caused by the use of the product, and these losses not only include direct, indirect, accidental or resulting in penalty losses and indirect losses.

The exemption clause is invalid if the manufacturer's behavior is intentional or gross negligence.

Depending on the legal circumstances of the use, it is not allowed to limit the implied warranties of the products, or exemptions from liability or restrictions on certain types of compensation are not allowed, and these rights may apply to these regulations, in which case, the above exemptions or restrictions may not apply to you in part or at all. For each product you purchase, the corresponding product documentation and the terms

of sale provided by the manufacturer shall apply.

For all the contents of the document, including this disclaimer, the manufacturer needs to reserve the following rights.

The content of this right is in any way, time or reason, without prior notice, but can be modified directly, and does not bear any form of responsibility for the consequences that may be brought about by any form of change.

# 2.4 Warning and symbol

| ∕ Marning             | The warning sign means that there is a danger, and attention must be<br>paid to the operating steps, procedures and related conditions in this<br>process, otherwise it may cause injury or death.                                    |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>∧</u> Notice       | Note that the sign means that there is danger, and attention must be<br>paid to the operation steps, operation process and conditions in this<br>process, otherwise it may cause local or overall damage or damage to<br>the product. |
| ▲ Important           | An important sign means to attract people's attention to avoid damage to the instrument or equipment.                                                                                                                                 |
| Annotation            | The comment mark means the information necessary for the operation and characteristics of the instrument.                                                                                                                             |
| Grounding<br>terminal | The grounding sign means that it must be grounded here.                                                                                                                                                                               |

### 2.5 User guidance

🖄 Warning

1) Installation.

• The installation of the electromagnetic flowmeter must be completed by a professional engineer or technician, and non-professionals are not allowed to perform the installation-related steps in the process.

• The electromagnetic flowmeter is heavy, so the staff must prevent the electromagnetic flowmeter from falling to the ground or exerting excessive pressure so as not to damage the instrument.

• When using electromagnetic flowmeter to measure thermal fluid, due to the high surface temperature of the instrument, care should be taken in the process of use to prevent scald.

• When the tested thermal fluid is toxic, care should be taken to avoid contact with the fluid or inhalation of residual gas during the removal of the instrument from the pipe.

• Do not exert too much weight on the instrument in the course of use.

• All steps related to installation must comply with the current national electrical operating rules.

2) Wiring.

•The wiring of the electromagnetic flowmeter must be completed by a professional engineer or technician, and non-professionals are not allowed to perform steps related to the wiring.

• The shell cover is not allowed to be removed until the power is turned off for at least 10 minutes.

• In the process of power cord wiring, it is necessary to first check whether the power supply voltage is within the voltage range required by the instrument.

• Before wiring, the signal line and excitation line should ensure that the power supply is disconnected.

• The protective grounding terminal must be safely connected to the marked terminal.

3) Maintenance.

• Maintenance electromagnetic flowmeters must be completed by professional engineers or technicians, and non-professionals are not allowed to perform maintenance-related steps.

• Technicians are required to strictly follow the maintenance steps listed in the instructions.

• If you have any request, please contact our company.

• Pay attention to avoid the accumulation of dirt and dust on the display panel glass or data panel. If the panel becomes dirty, clean it with a soft dry cloth.

# **Chapter 3 Instructions for operation**

The instrument has been carefully checked before leaving the factory. During delivery, the instrument needs to be carefully checked for damage in the course of transportation. If you have any questions, please contact our sales department immediately.

### 3.1 Checking models and specifications

Whether the nameplate on the surface of the instrument shell matches the order information, please tell us the product model and number when contacting our company.

### 3.2 Install accessories

Check whether the package contains the following components: 1 hexagonal wrench (specification: 4mm) for anti-loosening screw in and out of front cover and side cover when disassembling and disassembling.

### 3.3 Storage instructions

If the instrument needs to be stored for a long time after delivery, the following points must be observed:

- The instrument must be stored in the original seal.
- The storage location must meet the following conditions:
- 1) Should not be exposed to Rain Water.
- 2) Minimum vibration and shock.
- 3) The levels of temperature and humidity are as follows:

Temperature:-30 °C ~ 70 °C.

Humidity: relative humidity 5% to 80% (no condensation), the preferred ambient temperature is 25  $^{\circ}C$ , and the relative humidity is 65%.

• At the same time, if the converter has been left vacant at the installation site for a long time before installation, the performance of the converter may be affected by infiltration such as Rain Water. Therefore, the converter needs to be installed and connected as soon as possible after it is shipped to the installation site.

### 3.4 Instructions for installation site

In order to ensure the long-term stable operation of the instrument, the following terms need to be carefully considered when selecting the installation site.

• Ambient temperature:

It is necessary to avoid installing the instrument in a location where the temperature changes frequently, and thermal isolation must be used if the installation site is exposed to thermal radiation from the heat source in the workshop.

• Air environment:

Prevent the instrument from being installed in corrosive air.

• To vibrate or strike:

Prevent the instrument from being installed in a place where it will be subjected to vibration or impact.

# **Chapter 4 Installation**

Warning

The installation of the electromagnetic flowmeter must be completed by a professional engineer or technician. Non-professionals are not allowed to perform installation-related steps.

### 4.1 Installation condition

The main results are as follows: 1) avoid the direct sunlight or the surrounding places where the temperature is too high, in order to prevent the insulation performance of the excitation coil from being damaged due to the high ambient temperature.

2) Need to stay away from strong magnetic equipment such as large motors, large transformers and electric welders.

3) Avoid the interference of strong vibration as much as possible.

4) It is necessary to stay away from the corrosive air such as ammonia and acid fog as far as possible, and if the on-site environmental conditions can not be met, it needs to be put forward when the user orders, then the company will try to solve it.

5) During the installation of the flowmeter, the leakage current is not allowed, and both ends of the sensor and the connecting pipe should be reliably connected and grounded at the same time, and the grounding resistance should not be more than 10  $\Omega$ .

6) The fluid flow direction is consistent with the flow direction of the flowmeter.

7) The installed pipe needs to ensure that the measuring pipe is always filled with the tested medium to prevent the pipe from being left empty.

8) Electromagnetic flowmeters that are not lined with PFA/F46 should not be installed in the pipeline section with negative pressure as far as possible, in order to prevent the lining material from falling off.

9) If the requirement on the upstream side of the flowmeter is not less than 5D (pipe inner diameter) (figure 4.1.1), for example, if the upstream side is not fully open gate valve or regulating valve, the length of the upstream straight section of the flowmeter should not be less than 10D (figure 4.1.2); at the same time, the requirement for the straight section on the downstream side of the flowmeter is not high, as long as the data is greater than 3D.



Figure 4.1.1 Requirements for upstream straight pipe segment



Figure 4.1.2 There is a gate valve or regulating valve on the upstream side that is not fully open.

### 4.2 Installation specification

To ensure the normal operation of the instrument, the installation of the instrument must comply with the following points:

1)In order to prevent negative pressure, the elevation of the flowmeter should be slightly lower than that of the pipe, or a certain back pressure should be guaranteed on the downstream side of the flowmeter. As shown in figure 4.2.1:



Figure 4.2.1 Anti-negative pressure installation.

2) The measured inner diameter of the flowmeter should be consistent with the inner diameter of the pipe, and if the inner diameter is inconsistent, the inner diameter of the pipe should be larger than the inner diameter of the flowmeter.

At the same time, a tapered tube or diffuser tube with a cone angle of less than 15 °is installed in the flowmeter, as shown in figure 4.2.2:



Figure 4.2.2 Installation when the measured inner diameter is inconsistent with the inner diameter of the pipe

3) If the flowmeter is tilted or vertically installed, the flow direction of the flowmeter should be bottom-up, as shown in figure 4.2.3:



Figure 4.2.3 Inclined or vertical installation.

4) For pipes where flow interruption is not allowed in the process, at the same time, bypass pipes and cleaning ports need to be added next to the installation of flow timing. Figure 4.2.4 this device needs to ensure that the equipment system can work continuously when the flowmeter is out of use.





1) The small diameter flowmeter can be directly supported on the pipe, while the large diameter flowmeter must be installed on the foot, and the foot needs to bear the weight of the flowmeter through the foundation.

The connection of the downstream pipe of the flowmeter should be able to install expansion joints.

2) The flowmeter should prohibit the use of pipe rods or ropes to prevent it from being transported and hoisted through the measuring tube to prevent damage to the village.

3) It is forbidden to grasp the converter directly by hand.

4) The connection bolt between the flowmeter flange and the pipe flange must be tightened to ensure that the thickness of the sealing gasket is uniform, so that the flowmeter and the pipe are connected tightly and without leakage. At the same time, the inner diameter of the sealing gasket is not less than the inner diameter of the lining, and the concentricity should be maintained.

### 4.3 Installation



#### 4.3.1 Installation of integrated electromagnetic flowmeter

Figure 4.3.1 Installation of integrated electromagnetic flowmeter

Note:

A sealing gasket needs to be placed between the pipe flange and the flowmeter flange.
 Figure 4.3.1 shows that the bolt is inserted from one side of the pipe flange, while the other side is fixed and tightened with a nut.

#### 4.3.2 Installation of remote electromagnetic flowmeter

4.3.2.1 Installation of remote electromagnetic flowmeter



Figure 4.3.2 Installation of remote electromagnetic flowmeter

Note:

1) Place a sealing gasket between the pipe flange and the flowmeter flange.

2) Figure 4.3.2 shows that the bolt is inserted from one side of the pipe flange and fastened and tightened with a nut on the other side.

#### 4.3.2.2 Install remote converter

• Fix the converter to the steel pipe



Figure 4.3.3 Install a separation converter on a steel pipe

Note:

1) Use 4 screws to secure the instrument to the mounting bracket.

2) U-shaped bolts can install the mounting bracket and the instrument together on the pipe with a diameter  $\leq$  60mm.

3) If the installation line is non-conductive, the converter needs to be grounded separately.

• Fix the converter on the wall



Figure 4.3.4 Install a separation converter on the wall

Note:

1) 4 screws can secure the instrument to the mounting bracket.

2) Screws can install the mounting bracket and the instrument on the wall together.

### 4.3.3 External dimension

The external dimensions of the electromagnetic flowmeter are shown in the following table:

| Remote<br>sensor     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a=102mm             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b=115mm             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c=145mm①            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total height =H+a   |
| Remote<br>sensor     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a=183mm             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b=325mm             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c=152mm             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d=148mm             |
| Integrated flowmeter | d to the second | a=80mm②             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b=152mm             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c=183mm①            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d=233mm             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total height =H+a+b |

Note:

1) The size varies depending on the cable connector.

2) When the temperature of the medium is higher than 100C, the size is 160mm.

| Caliber -DN | Nominal pressure | Nominal pressure |           |           | Reference       |
|-------------|------------------|------------------|-----------|-----------|-----------------|
| (mm)        | (MPa)            | L<br>(mm)        | H<br>(mm) | D<br>(mm) | weight.<br>(kg) |
| 8           | 4.0              | 150              | 108       | 90        | 5               |
| 10          | 4.0              | 150              | 108       | 90        | 5               |
| 15          | 4.0              | 200              | 114       | 95        | 8               |

| 20   | 4.0  | 200  | 126  | 105  | 9    |
|------|------|------|------|------|------|
| 25   | 4.0  | 200  | 141  | 115  | 9    |
| 32   | 4.0  | 200  | 154  | 140  | 10   |
| 40   | 4.0  | 200  | 166  | 150  | 11   |
| 50   | 4.0  | 200  | 179  | 165  | 12   |
| 65   | 1.6  | 200  | 196  | 185  | 16   |
| 80   | 1.6  | 200  | 210  | 200  | 18   |
| 100  | 1.6  | 250  | 230  | 220  | 22   |
| 125  | 1.6  | 250  | 264  | 250  | 25   |
| 150  | 1.6  | 300  | 301  | 285  | 31   |
| 200  | 1.6  | 300  | 346  | 340  | 41   |
| 250  | 1.0  | 300  | 405  | 395  | 65   |
| 300  | 1.0  | 350  | 452  | 445  | 66   |
| 350  | 1.0  | 350  | 508  | 505  | 83   |
| 400  | 1.0  | 450  | 563  | 565  | 112  |
| 450  | 1.0  | 450  | 613  | 615  | 120  |
| 500  | 1.0  | 500  | 671  | 670  | 163  |
| 600  | 1.0  | 600  | 792  | 780  | 255  |
| 700  | 0.6  | 600  | 888  | 895  | 249  |
| 800  | 0.6  | 700  | 1001 | 1015 | 340  |
| 900  | 0.6  | 800  | 1103 | 1115 | 450  |
| 1000 | 0.6  | 900  | 1199 | 1230 | 500  |
| 1200 | 0.6  | 1000 | 1420 | 1400 | 590  |
| 1400 | 0.25 | 1200 | 1555 | 1620 | 680  |
| 1600 | 0.25 | 1600 | 1763 | 1820 | 980  |
| 1800 | 0.25 | 1800 | 1963 | 2045 | 1000 |
| 2000 | 0.25 | 2000 | 2168 | 2265 | 1100 |
| 2200 | 0.25 | 2200 | 2267 | 2400 | 1400 |
| 2400 | 0.25 | 2400 | 2572 | 2600 | 1500 |
| 2600 | 0.25 | 2600 | 2810 | 2800 | 1600 |
| 2800 | 0.25 | 2800 | 3040 | 3030 | 1750 |
| 3000 | 0.25 | 3000 | 3240 | 3230 | 1900 |
|      |      |      |      |      |      |

# **Chapter 5 Wiring**

Warning

The wiring of the electromagnetic flowmeter needs to be completed by a professional engineer or technician, and non-professionals are not allowed to perform steps related to the wiring.

#### Attention

When all wiring is completed, all interfaces need to be checked before being powered on, and incorrect wiring or wiring can cause failure or damage to the parts.

### 5.1 Wiring instructions

Please observe the following instructions during the wiring process:

- If the ambient temperature is  $\geq 50 \ ^{\circ}C$  (122 degrees Fahrenheit), an external heat-resistant wire with a maximum heating temperature  $\geq 70 \ ^{\circ}C$  (158 degrees Fahrenheit) is required.
- At the same time, in order to protect the insulation and prevent damage caused by condensation, do not connect the cable outdoors on rainy days.
- The standard cable is used correctly for the whole connection, and the cable cannot be continued.
  - Ground the sensor and the converter respectively.
- Before removing the shell cover, you need to make sure that the power supply has been cut off for more than 10 minutes.
- At the same time, make sure the cover is tight before you can turn on the power supply.

• Explosion-proof products need to be wired according to specific requirements (as well as national laws and regulations) in order to ensure explosion-proof performance.

### 5.2 Remote cable

#### 5.2.1 Standard cable A

If there is no strong electromagnetic interference in general applications, the length of the separation cable is less than or equal to 30 meters, then the standard cable An is used to connect the sensor and the converter.

The type of cable is shown in figure 5.2.1:



Figure 5.2.1 Schematic diagram of standard cable

Note:

1) The diameter of the cable 10.5mm.

2) Insulation sheath material: polyethylene.

#### 5.2.2 Standard cable B

In special applications, if there is strong electromagnetic interference, the length of the separation cable is more than 30 meters, and the standard cable B can be used to connect the sensor and the converter, and the cable type is shown in figure 5.2.2:



Note:

1) Cable diameter 10.5mm.

2) Insulation sheath material: polyethylene.

#### Attention

If the cable is too long, you need to cut off the excess instead of winding it up. The wire terminals have been disposed of before they leave the factory. In this process, avoid using the intermediate connecting plate to extend the cable, otherwise it will destroy the shielding function.

5.3 Terminal

#### 5.3.1 Electrical interface

The instrument has waterproof and sealing performance, and the wiring process should be installed according to the following instructions when leaving the factory:



Figure 5.3.1 Schematic diagram of electrical interface.

Note:

1) In the input and output cable, the diameter 8~10mm should be selected to install, so as to Ensure the waterproof joint to lock the cable normally.

2) The cable waterproof joint needs to use non-metallic joint.

#### 5.3.2 Terminal

• Power terminal / input, output terminal



Figure 5.3.2 Schematic diagram of input and output terminals

| Terminal Typ           | Identification | Description         |
|------------------------|----------------|---------------------|
| Power cord.            | 1-≟            | Power ground        |
|                        | 2-N/-          | 220V or 24V-        |
|                        | 3-L/+          | 220V or 24V+        |
| Input and output lines | 1-Do+          | Pulse output +      |
|                        | 2-Do-          | Pulse output-       |
|                        | 3-lo+          | (4~20) mA output +  |
|                        | 4-lo-          | (4~20) mA output-   |
|                        | 5-DI+          | Contact input +     |
|                        | 6-DI-          | Contact input-      |
|                        | 7-A            | RS485-A.            |
|                        | 8-B            | RS485-B.            |
|                        | 9-NC           | Relay output.       |
|                        | 10-COM         | Relay output-ground |

- Remote terminal
- 1) Remote sensor terminal
  - •Applied to standard cable type A



Figure 5.3.3 Schematic diagram of the terminal of the separation sensor (standard cable A)

| Terminal Type | Identification      | Description                             |
|---------------|---------------------|-----------------------------------------|
| Excitation    | G                   | Coil excitation line-green.             |
| line.         | Y                   | Coil excitation line-yellow.            |
|               | GND                 | Sensor ground wire.                     |
| Signal line.  | W                   | Electrode 1 signal line-red.            |
|               | В                   | Electrode 2 signal line-blue.           |
| Shielded wire | Electrode shielding | The two electrode shielding wires       |
| ground        | wire (ground).      | drawn by the sensor can be connected to |
|               |                     | the ground.                             |
|               | Cable shielded wire | The shielded wire of standard cable An  |
|               | (ground)            | is connected to the ground.             |

#### •Can be used for standard cable type B



Figure 5.3.4 Schematic diagram of the terminal of the separation sensor

#### 2) Remote converter terminal.

#### •Apply to standard cable A

| Terminal Type       | Identification | Description                       |
|---------------------|----------------|-----------------------------------|
| Excitation line.    | G              | Coil excitation line-green.       |
|                     | Y              | Coil excitation line-yellow.      |
|                     | GND.           | Excitation cable ground           |
|                     |                | wire-black.                       |
| Signal line.        | DW             | Electrode 1 signal line shielding |
|                     |                | layer-white.                      |
|                     | W              | Electrode 1 signal line-white.    |
|                     | В              | Electrode 2 signal line-black.    |
|                     | DB             | Electrode 2 signal line shielding |
|                     |                | layer-black.                      |
|                     | GND            | Signal cable ground wire-black.   |
| Cable shielded wire | Ē              | Cable shield                      |



### Figure 5.3.5 Schematic diagram of the terminal of the separation converter (standard

cable A)

| Terminal Type    | Identification | Description                  |
|------------------|----------------|------------------------------|
| Excitation line. | G              | Coil excitation line-green.  |
|                  | Y              | Coil excitation line-yellow. |
|                  | GND            | Sensor ground wire.          |
| Signal line.     | W              | Electrode 1 signal line-red. |
|                  | В              | Electrode 2 signal line-blue |

•Apply to standard cable B



| Figure 536     | Schematic diagram   | of the terminal | of the se | naration c | onvortor |
|----------------|---------------------|-----------------|-----------|------------|----------|
| 1 igui C 0.0.0 | ounciliatio ulagram |                 |           |            | Unverter |

| Terminal Type   | Identification | Description                       |  |
|-----------------|----------------|-----------------------------------|--|
| Excitation line | G              | Coil excitation line-green.       |  |
|                 | Y              | Coil excitation line-yellow.      |  |
|                 | GND.           | Excitation cable ground           |  |
|                 |                | wire-black.                       |  |
| Signal line     | DW             | Electrode 1 signal line shielding |  |
|                 |                | layer-white.                      |  |
|                 | W              | Electrode 1 signal line-white     |  |
|                 | В              | Electrode 2 signal line-black.    |  |
|                 | DB             | Electrode 2 signal line shielding |  |
|                 |                | layer-black.                      |  |
|                 | GND            | Signal cable ground wire-black    |  |

#### Attention

Terminals, W, B, DW, DB and GND, have different potentials and need to avoid contact with each other in order to insulate them.

At the same time, in order to prevent the mutual contact between the shielding layers or the contact between the shielding layer and the shell, each shielding layer should be covered with vinyl resin pipe or wrapped with polyethylene tape.

### Note

There is a signal at the W and B transmission electrodes of the wire, while the GND has the potential of the liquid itself (the signal shares the terminal). The shielding layer DW and DB keep the same potential as other electrodes. At the same time, in order to reduce the influence of cable distributed capacitance in the case of long cable. In this process, we need to pay attention to that the signals of each electrode can be transformed in the interior of the converter, so the use of these wires to contact with any other devices may cause errors. In short, be extra careful when dealing with cable terminals.

# 5.4 Wiring



### 5.4.1 Remote electromagnetic flowmeter with sensor wiring

Fig. 5.4.1 Schematic diagram of sensor wiring of remote electromagnetic flowmeter •Standard cable B connection





### 5.4.2 Power cord connection

When connecting the power cable, you must observe the following points, if you violate these warnings, it will cause damage to the instrument.

/ Warning

•Make sure the power supply is cut off to prevent electric shock.

•Pay attention to the power supply mode of the instrument.

•Before turning on the power supply, you need to make sure that the ground terminal of the power supply is grounded.



•When supplying power through the DC power supply, ensure that the voltage of the power supply should be between 18V and 30V. However, the input voltage of the





Power supply voltage and cable length

#### / Warning

Before wiring the external instrument, make sure that the power of the converter and other external instruments is turned off. At the same time, when the terminal of the flowmeter is connected to the external instrument, there are the following types:

• (4~20) mA Output



#### Figure 5.4.4 Current (4~20) mA output connection

• Frequency (pulse) output.

1) Passive pulse output



Figure 5.4.5 Passive pulse output connection

### Important

Please pay attention to the polarity of the electrode when wiring.

•The input filter constant of the electronic counter is larger than the pulse width, which can weaken the signal, resulting in inaccurate counting.

•The maximum DC voltage is 30V and the maximum current is 0.2A.

2) Active pulse output



Figure 5.4.6 Active pulse output connection

### 💁 Important

•Output voltage: 30V. DC ±20%.

- ●Current: ≤ 150mA.
- •Pulse frequency: 0.0001~10000Hz.

Pulse width: 50% duty cycle、0.05ms、0.1ms、1ms、20ms、50ms、100ms
Status output / alarm output



Figure 5.4.7 Status output / alarm output connection

### Important

Attention should be paid to the voltage and electrode polarity when wiring, in which the

maximum DC voltage is 30V and the maximum current is 0.2A. At the same time, if the input filter constant of the electronic counter is larger than the pulse width, the signal is weakened and the counting is inaccurate. The output signal cannot be switched to an AC load, so to switch to an AC load, an intermediate relay must be connected.

#### •Status input



Figure 5.4.8 Status input connection

# Important

Note that this state cannot be connected to any signal source with voltage, otherwise the input line will be damaged.

#### Relay output

This instrument has a built-in relay with a specification of 250V. Ac \_ hand 3A, 30V. DC \_ hand, 3A. Be careful not to exceed the load of the relay in this process. Among them, if you need to drive a larger current or voltage, you must connect to the intermediate relay.



Figure 5.4.9 Relay output connection (left-normally closed, right-normally open)

#### 5.4.4 Conduit tube cable

After completing the connection of the power cord and the external connection cable, it is necessary to carry out the lead arrangement of the wire outside the converter in order to prevent Rain Water from extending the wire into the inside of the converter, and the low-lying points of the lead should be added as recommended in figure 5.4.10.



Figure 5.4.10 External wiring

# 5.5 Earthing grounding

### 5.5.1 Converter grounding



Figure 5.5.1 Converter grounding

### 5.5.2 Sensor grounding

1) Installation grounding on metal pipes

The medium in the metal pipe can have a good electrical connection with the earth, and the sensor can be reliably connected with the metal pipe. As can be seen in figure 5.5.2, the sensor has higher requirements for grounding, and a separate grounding device is required if the environment has strong electromagnetic interference. The grounding device is buried in wet soil greater than 1 meter in depth and the grounding wire requires strands of copper wire with a cross-sectional area of not less than  $4mm^2$ .



Figure 5.5.2 Installation grounding on metal pipes.

2) Installation grounding on insulated pipes.

Figure 5.5.3 you can see that the flowmeter is in contact with the measuring medium through a grounding electrode or grounding ring, and the grounding device can be connected using the grounding bus at both ends of the flowmeter flange.



Figure 5.5.3 Installation grounding on insulated pipes.

3) There is strong stray current in the pipeline.

When there is a strong stray current in the pipeline, it is necessary to block the stray current through the flowmeter. At the same time, when installing the pipe, it is necessary to install an insulated short pipe between the pipe and the flowmeter, and grounding according to the grounding method of installing the flowmeter on the insulated pipe. Pipes that have been electrically remote by short insulated pipes need to be connected by copper wires with a cross-sectional area of not less than 4mm<sup>2</sup>. As shown in figure 5.5.4, the leakage current in such pipes will be shunted from the copper wire instead of passing through the flowmeter, reducing the interference introduced by the tested liquid.



Figure 5.5.4 Grounding in the presence of strong stray current

# Chapter 6 Basic operating steps (introduction of

# display unit)

The correction of the data setting in the display unit is realized by the three setting keys:  $\blacktriangle$  and ENT. This chapter introduces in detail the structure and usage of the basic data of the setting key.

# 6.1 Panel



Figure 6.1.1 Panel

# 6.2 Set the operation of the key

| Press the key      | Main interface                                                      | First-level menu               | Second-level menu                                   | Parameter modification menu<br>function                                                                                 |
|--------------------|---------------------------------------------------------------------|--------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| ESC<br>(BACK+NEXT) | Go to the first level menu.                                         | Return to the main interface.  | Return to the first-level menu.                     | Cancel modification.                                                                                                    |
| ENT                | Entry alarm<br>State interface                                      | Go to the second<br>level menu | Enter the<br>parameter<br>modification<br>interface | Move the cursor to the right to<br>modify the data, and confirm the<br>change after moving to the<br>rightmost position |
|                    | Switch to the contents of a display unit on the menu at this level. |                                |                                                     | Increase the cursor bit value or move the option up.                                                                    |
| ▼                  | Switch to the next display unit content of the menu at this level   |                                |                                                     | The cursor bit value decreases or the option moves down.                                                                |
| BACK+ ENT          | Unlock the button                                                   | /                              | /                                                   | 1                                                                                                                       |

Press the BACK key and enter key at the same time, you can unlock the ESC key and the ENT key, and then press ESC (key combination BACK+NEXT) to enter the password interface, and after verification, you can browse and modify the parameters (write

protection needs to be turned off in the system parameters).

If there is no valid key after 5 minutes, relock the button and return to the main interface while turning on write protection.



### 6.3 Display interface and content

There are four display interfaces in the display mode. At present, you can use BACK or next key to make a choice based on the first display interface to the fourth display



### 6.4 Display mode to setup mode

### 6.4.1 Menu structure

#### The menu is divided into two levels

•First-level menu structure



#### •Second-level menu structure






# 6.4.2 Display example: to display the interface to the parameter setting mode



#### 6.4.3 Parameter setting mode

If you activate the parameter setting mode by following the steps described above, you can then select the parameter you want to set.

If there is no operation within about 5 minutes after entering this mode, the system will automatically return to the main interface, and the keystroke and password status will be re-locked.

Parameter data format:

Depending on the type of parameter, the data can be in the following two formats:

| Format.                | Typical display                                                                                            | Display option.                                    | Content.                                                            |  |
|------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|--|
| 1) Discrete selection. | <pre>&gt; FLOW UNIT 1:m<sup>3</sup>/h 2:m<sup>3</sup>/min 3:L/h</pre>                                      | M ³/ h, m ³/ min,<br>L _ max h,<br>L/min, etc.     | Select the desired<br>data from the<br>predetermined<br>options.    |  |
| 2) Numerical<br>type   | PLOW SPAN           900.00         m <sup>3</sup> /h           Range:0.01-100000         Range:0.01-100000 | The values are<br>0, 1, 2, 3, 4, 5,<br>6, 7, 8, 9. | The data consists<br>of numbers,<br>decimal points, and<br>symbols. |  |

#### 6.5 Parameter setting steps instantaneous flow unit

The example mainly introduces the discrete selective parameters: 1: quickly set the setting of flow units, from the default "m  $^{3}$ /h" to "Lbinh".

When the system is in the parameter setting menu, select the parameters to be set, and the commonly used parameters are integrated in the whole parameter setting mode. This section mainly introduces the operation steps of flow unit setting and range setting.

#### 6.5.1 Example of discrete selection setting





#### 6.5.2 Example of setting up numeric data: flow range

The example introduces the numerical parameters: 1: quickly set the setting of the flux range from the default "500.00" to "900.00".



NEXT×4

#### Chapter 6 Basic operating steps (introduction of display unit)



# **Chapter 7 Description of parameters**

### 7.1 Parameters

Except for the parameters specifically required by the user when ordering, all other internal parameters are initialized to the default values.

### 🛕 Important

Ensure that the power supply is stable during the setup process, and that the power supply needs to be turned off immediately after completing the parameter setting, then the setting parameters may go wrong.

### A Note

If the converter is booked separately, the instrument coefficient needs to be set to the default value, so the user must change the instrument coefficient setting according to the sensor nameplate

### 7.2 Parameter list overview

The items in the parameter list refer to the 6.4.1 menu bar structure.

1) EASY SETUP

| Proj | Name.             |   | Dete renge                    | Unit | Default            | Content description                                                                                                                                                                                                                       |
|------|-------------------|---|-------------------------------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ect  | Show.             |   | Data range                    | Unit | value              | Content description.                                                                                                                                                                                                                      |
| 1-1  | FLOW SPAN         | w | Data range: 0.1<br>to 100000. | 1    | 500.00             | If the upper limit flow of<br>the corresponding current<br>output, the unit is<br>associated with 1-6                                                                                                                                     |
| 1-2  | FLOW<br>LOWCUT    | w | (floating point).             | m/s  | 0.0000             | When the absolute value<br>of the velocity is lower<br>than the cut value, the<br>value is assigned to 0.                                                                                                                                 |
| 1-3  | FLOW<br>DANMPING  | w | 0.010.                        | S    | 3.0                | The response time of the<br>flow can restrain the<br>fluctuation and smooth<br>the flow curve.<br>The smaller the damping<br>time is, the faster the<br>response is, and the<br>larger the flow is, the<br>more stable the flow is.       |
| 1-4  | FLOW<br>DIRECTION | w | (floating point).             | 1    | Two-way<br>forward | One-way: positive<br>measurement only.<br>Two-way: forward and<br>reverse measurement.<br>Positive direction: it is<br>positive in accordance<br>with the direction of the<br>flow direction of the<br>sensor.<br>Reverse: it is positive |

|     |                  |   |                                                                                          |      |      | opposite to the direction<br>of the flow direction of the<br>sensor.                                                                                                                    |
|-----|------------------|---|------------------------------------------------------------------------------------------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-5 | FLUID<br>DENSITY | w | 0.1 to 200.                                                                              | t/m3 | 1.0  | When calculating the<br>mass flow rate, you need<br>to enter the density value<br>of the current fluid.                                                                                 |
| 1-6 | FLOW UNIT.       | w | (floating point).                                                                        | 1    | m³/h | Display the units<br>corresponding to the<br>instantaneous flow in the<br>interface                                                                                                     |
| 1-7 | TOTAL UNIT       | w | One-way<br>forward,<br>one-way<br>reverse,<br>two-way<br>forward,<br>two-way<br>reverse. | 1    | m³   | Displays the units<br>corresponding to the<br>cumulative flow in the<br>interface.                                                                                                      |
| 1-8 | VELOCITY<br>UNIT | w | 0.1 to 10.                                                                               | 1    | m/s  | Display the units<br>corresponding to the flow<br>velocity in the interface.                                                                                                            |
| 1-9 | TOTAL<br>DECIMAL | w | (floating point).                                                                        | 1    | 1    | The number of decimal<br>places is selected by the<br>value of flow resolution,<br>and the number of<br>decimal places<br>decreases automatically<br>when the accumulation is<br>large. |

#### 2) BASIC SETUP

| 2-1 | NOMINAL SIZE     | w | 8 -3000 (floating point).                                           | mm | 150.00 | Nominal aperture of<br>electromagnetic sensor<br>used for measurement.                                                                                                          |
|-----|------------------|---|---------------------------------------------------------------------|----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-2 | METER<br>FACTOR  | W | 0.1 to 1000<br>(floating point).                                    | 1  | 1.0000 | After the electromagnetic<br>sensor is calibrated with<br>the converter, the factory<br>flow coefficient is formed,<br>which is proportional to the<br>instantaneous flow rate. |
| 2-3 | FORWARD<br>TOTAL | w | 099999999<br>(floating point).                                      | m³ | 0      | Preset or zero for positive cumulative flow values                                                                                                                              |
| 2-4 | REVERSE<br>TOTAL | w | 099999999<br>(floating point).                                      | m³ | 0      | Preset or zero for negative cumulative flow values                                                                                                                              |
| 2-5 | MAX TOTAL        | w | 1099999999<br>(floating point).                                     | m³ | 0      | The maximum cumulative display value of the interface display.                                                                                                                  |
| 2-6 | TOTAL<br>OPTION  | w | Off, on, forward<br>cumulative zero,<br>reverse<br>cumulative zero. | 1  | open   | The accumulator can be<br>turned on or off, or the<br>accumulative volume can<br>be cleared, and the zero<br>option is not saved.                                               |

#### Chapter 7 Description of parameters

| 2-7  | FLOW HOLD<br>TIME | w | 0.0115.0<br>(floating point).            | s  | 3.0  | The flow changes greatly,<br>and if the timing does not<br>reach this time, the<br>flowmeter will not respond<br>to the sudden flow<br>immediately.                                                                                                                |
|------|-------------------|---|------------------------------------------|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-8  | RATE LIMIT        | w | Ofloating 10.0<br>(floating point).      | %  | 10.0 | Correlation 2-7 flow<br>response time, when the<br>flow change exceeds a<br>certain proportion of the<br>flow range, it will be a<br>sudden change.<br>At present, the ratio value<br>can be set according to the<br>fluctuation of working<br>conditions.         |
| 2-9  | NOISE LIMIT       | w | 0.0510.0<br>(floating point).            | %  | 5.0  | If there is a small<br>fluctuation in the flow rate,<br>and the value is lower than<br>the noise limit, it is noise.<br>The flowmeter can restrain<br>it.                                                                                                          |
| 2-10 | NOISE<br>DAMPING  | w | 1: 10.                                   | 1  | 3.0  | Associated noise limit, the<br>noise value will attenuate<br>proportionally, 1-no<br>attenuation, 10-attenuation<br>to 1max 10                                                                                                                                     |
| 2-11 | EX<br>FREQUENCY   | w | 1.5625 、<br>3.125 、 6.25 、<br>12.5 、 25. | Hz | 6.25 | The excitation frequency of<br>the electromagnetic<br>flowmeter can be selected<br>according to the sensor<br>type and working<br>condition, which is usually<br>set by the factory.                                                                               |
| 2-12 | EX CURRENT        | w | Low, high.                               | 1  | low  | The excitation frequency of<br>the electromagnetic<br>flowmeter can be selected<br>according to the sensor<br>type and working<br>condition, which is usually<br>set by the factory.                                                                               |
| 2-13 | GAIN LOCK         | w | Off, on                                  | 1  | off  | When the signal circuit is<br>turned on, the gain of the<br>sampled signal is locked to<br>a small gain, and the<br>anti-interference ability is<br>enhanced. When the<br>circuit is closed, it is a<br>large gain and the<br>measurement accuracy is<br>improved. |

| 3-1 | FLOW UNIT<br>CUSTOM | w | Off, on                                                | 1 | off | When turned on, the<br>instantaneous unit of<br>measurement uses a<br>custom unit.            |
|-----|---------------------|---|--------------------------------------------------------|---|-----|-----------------------------------------------------------------------------------------------|
| 3-2 | USER FLOW<br>UNIT   | W | Combination of<br>8-bit characters<br>and numbers.     | 1 | 0.0 | Sets custom unit characters.                                                                  |
| 3-3 | FLOW UNIT<br>COE    | W | 0.001mm 1000.                                          | 1 | 1   | A coefficient in which a custom instantaneous unit of measurement is equal to a unit of flow. |
| 3-4 | TOT UNIT<br>CUSTOM  | W | Off, on.                                               | 1 | Off | Cumulative units when on, using custom units.                                                 |
| 3-5 | USER TOT<br>UNIT    | W | Combination of<br>6-digit<br>characters and<br>numbers | 1 | 1   | Set custom unit character.                                                                    |
| 3-6 | TOT UNIT COE        | w | 0.001~1000                                             | 1 | 1   | A coefficient in which a custom cumulant unit is equal to a cumulant unit.                    |

#### 3) CUSTOM UNIT

#### 4) ADJUSTMENT

| 4-1 | AUTOZRRO<br>EXE     | w | 1                                | 1    | /      | Zero setting operation<br>can be carried out when<br>the flowmeter is full and<br>the fluid is not flowing,<br>and the setting time is<br>180 seconds.                                                                            |
|-----|---------------------|---|----------------------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-2 | ZERO SET            | w | -500~500<br>(Floating<br>point)  | m³/h | 0.0    | Manually set the zero<br>value of the current<br>flowmeter, when the<br>flowmeter is full and the<br>fluid is not flowing,<br>carefully observe the<br>average value of the flow,<br>and then enter the<br>average value          |
| 4-3 | 4mA<br>Calibration  | w | 3.8~4.2<br>(Floating<br>point)   | mA   | 4.0000 | Manually calibrate the<br>current output 4mA, you<br>can connect the ammeter<br>to the current output<br>interface when calibrating<br>the interface, and input<br>the current ammeter<br>reading to complete the<br>calibration. |
| 4-4 | 20mA<br>Calibration | w | 19.5~20.5<br>(Floating<br>point) | mA   | 20.000 | Manually calibrate the<br>current output 20mA, you<br>can connect the ammeter<br>to the current output<br>interface when calibrating<br>the interface, and input<br>the current ammeter<br>reading to complete the                |

|     |                       |   |                                                                   |    |                      | calibration.                                                                                                                                                                                                                                |
|-----|-----------------------|---|-------------------------------------------------------------------|----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-5 | CURRENT<br>DAMPING    | W | 0.1~30<br>(Floating<br>point)                                     | S  | 3.0                  | The response time of the<br>output current can<br>restrain the fluctuation<br>and ensure the stable<br>output of the current, and<br>the smaller the damping<br>time is, the faster the<br>response is, the more<br>stable the response is. |
| 4-6 | TEST FLOW<br>PERECENT | w | -120~120<br>(Integer<br>number)                                   | %  | 0                    | The current and pulse<br>output can be debugged,<br>and the output value is<br>equal to the full range<br>flow multiplied by the<br>percentage of analog<br>flow.                                                                           |
| 4-7 | ANALOG<br>LATCH       | w | Off, on                                                           | 1  | Close.               | When a latch condition is<br>enabled in the converter<br>and a serious error<br>occurs, the analog output<br>must enter the fault<br>protection condition.                                                                                  |
| 4-8 | NAMUR<br>OPTION       | W | Off, on                                                           | /  | open.                | The user needs to<br>confirm the latch failure or<br>power restart through the<br>DD or monitor to make<br>the converter return to<br>normal. Enables or<br>closes Namur.                                                                   |
| 4-9 | NAMUR<br>LEVEL        | w | High current<br>and low current                                   | 1  | High<br>current      | Alarm level: default High<br>(maximum output<br>21.5mA), Low (minimum<br>output 3.58mA)                                                                                                                                                     |
| 5)  | PULSE SET             |   |                                                                   |    | i                    |                                                                                                                                                                                                                                             |
| 5-1 | PULSE<br>SCALE        | w | 1~1000<br>(Floating<br>point)                                     | 1  | 1.00                 | The cumulative value of each pulse is associated with a 5-3 pulse unit.                                                                                                                                                                     |
| 5-2 | PULSE WIDTH           | W | 50% duty cycle、<br>0.05、0.1、1、<br>20、50、100                       | ms | 50%<br>duty<br>cycle | The high level width of<br>each pulse output, and its<br>50% duty cycle, the pulse<br>width is determined by<br>the pulse frequency.                                                                                                        |
| 5-3 | PULSE UNIT            |   | u TotalUnit/P、m<br>TotalUnit/P、<br>TotalUnit/P、<br>k TotalUnit/P、 | 1  | u                    | The unit of pulse<br>equivalent is related to<br>the cumulative flow unit,<br>which represents<br>0.000001, 0.001, 1, and                                                                                                                   |

k TotalUnit/P

1000 times the cumulative flow unit.

| 6)  | DIO FUNCTIO | N |                                                                                                                                |   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-------------|---|--------------------------------------------------------------------------------------------------------------------------------|---|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-1 | DO FUNCTION | w | Pulse output.<br>Upper and lower<br>limit flow alarm.<br>Batch control<br>output.<br>Air flow control<br>alarm.<br>Fault alarm | 1 | Pulse<br>output. | Pulse output: configure<br>the DO interface as pulse<br>output, correlating 5-1<br>and 5-2.<br>Upper and lower limit flow<br>alarm: output alarm<br>signal when<br>instantaneous flow is<br>greater than upper limit<br>flow alarm value,<br>correlation 7-1; output<br>alarm signal when<br>instantaneous flow is less<br>than lower limit flow<br>alarm value, correlation<br>7-2.<br>Batch control output:<br>when the batch control is<br>turned on, if the<br>cumulative amount<br>exceeds the batch alarm<br>value, the alarm signal is<br>output, which is<br>associated with 7-4 and<br>7-5.<br>Air flow control alarm:<br>when the flowmeter is in<br>the air flow control state,<br>it outputs the alarm signal<br>and correlates 7-6 and<br>7-7.<br>Fault alarm: output alarm<br>when there is any fault in<br>the flowmeter |
| 6-2 | DI FUNCTION | w | None.<br>Batch zero<br>clearance.<br>Cumulative zero<br>clearance.<br>Zero setting                                             | / | None.            | None: no contact input<br>function.<br>Batch zeroing: when DO<br>is configured to batch<br>control output, clear this<br>accumulation and<br>accumulate for the next<br>batch.<br>Cumulative zero: zero the<br>cumulative flow of the<br>instrument.<br>Zero setting: set the zero<br>flow at this time to ensure<br>that the pipe is full and<br>the fluid is static                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 6-3 | Relay<br>FUNCTION | W | Upper and lower<br>limit flow alarm.<br>Batch control<br>output.<br>Air flow control<br>alarm.<br>Fault alarm | 1 | Fault<br>alarm | Upper and lower limit flow<br>alarm: when the<br>instantaneous flow is<br>greater than the upper<br>limit flow alarm value, the<br>alarm signal is output and<br>associated with 7-1;<br>when the instantaneous<br>flow is less than the lower<br>limit flow alarm value, the<br>alarm signal is output and<br>associated with 7-2.<br>Batch control output:<br>when batch control is<br>enabled, if it is found that<br>the cumulative amount<br>exceeds the batch alarm<br>value, the alarm signal is<br>output, associated with<br>7-4 and 7-5.<br>Air flow control alarm:<br>when the flowmeter is in<br>the air flow control state,<br>it outputs the alarm signal<br>and correlates 7-6 and<br>7-7 at the same time.<br>Fault alarm: if there is any<br>fault in the flowmeter, the<br>data will be output to<br>alarm. |
|-----|-------------------|---|---------------------------------------------------------------------------------------------------------------|---|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-1 | FLOW HIGH         | w | -200% less than<br>200% (floating<br>point).                                                                  | % | 90             | Set the alarm value of the<br>upper limit of the<br>instantaneous flow, and<br>when the upper limit flow<br>alarm is enabled in the<br>DO interface or the relay<br>output interface, and<br>when the instantaneous<br>flow is greater than the<br>upper limit alarm<br>percentage multiplied by<br>the measuring range, the<br>alarm signal is output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7-2 | FLOW LOW<br>ALARM | w | -200% less than<br>200% (floating<br>point).                                                                  | % | 20             | Set the alarm value of the<br>lower limit of<br>instantaneous flow, and<br>enable the alarm of the<br>lower limit of flow in the<br>DO interface or relay<br>output interface. When<br>the instantaneous flow is<br>less than the lower limit<br>alarm percentage<br>multiplied by the<br>measuring range, the<br>alarm signal is output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 7-3 | H/L ALARM HYS      |   | 0.09 10.0%.                     | %  | 5      | In the case of upper and<br>lower limit alarm, if the<br>flow value leaves the<br>alarm area, it will not<br>alarm immediately, but<br>add a lag interval to<br>prevent the alarm state<br>from being switched<br>frequently.                              |
|-----|--------------------|---|---------------------------------|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-4 | ВАТСН              | w | 0.010000.0<br>(floating point). | m³ | 0.0000 | Batch control alarm is<br>enabled if DO interface or<br>relay output interface.                                                                                                                                                                            |
| 7-5 | BATCH RST<br>DELAY | w | 1 to 30 integers.               | S  | 30     | If the cumulative flow is<br>greater than the batch<br>alarm value, the alarm<br>signal is output.                                                                                                                                                         |
| 7-6 | EMPTY<br>DETECT    | w | On, off                         | 1  | On     | Turn on or off the air flow<br>control alarm function. By<br>detecting the air flow<br>control alarm function,<br>you can detect whether<br>the pipeline is in the state<br>of empty flow control or<br>whether the electrical<br>conductivity is too low. |
| 7-7 | EMPTY<br>THRESGOLD | w | 0~3                             | 1  | 0.2    | Define the air flow control<br>state, and the sampled air<br>flow control signal value<br>is considered as the<br>empty flow control in the<br>pipeline when it is higher<br>than the threshold value.                                                     |

#### 8) RS45 STEUP

| 8-1 | ADDRESS   | w | 1~255                             | 1 | 1    | When communicating<br>with RS485, the address<br>used by the host to query<br>the local information.                       |
|-----|-----------|---|-----------------------------------|---|------|----------------------------------------------------------------------------------------------------------------------------|
| 8-2 | BAUD RATE | w | 2400、4800、<br>9600                | 1 | 2400 | Data can be transmitted<br>at a rate when<br>communicating with<br>RS485.                                                  |
| 8-3 | PARITY    | w | None, odd<br>check, even<br>check | 1 | none | A check method for<br>verifying whether a single<br>byte is transmitted<br>incorrectly when<br>communicating with<br>RS485 |

#### 9) NONLINEAR

| 9-1    | NONLINEAR<br>SWITCH | w | Off,on      | /    | on     | Set the switch of the flow<br>nonlinear correction<br>function, if you choose to<br>turn off the switch, the<br>correction coefficients of<br>the following five<br>correction points have no<br>effect. |
|--------|---------------------|---|-------------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9-2    | NONLINEAR<br>FLOW 1 | W | 0.01~100000 | m³/h | 1.0000 | The first correction point.                                                                                                                                                                              |
| 9-3    | NONLINEAR<br>COE 2  | W | 0.5~1.5     | 1    | 1.0000 | First correction point<br>coefficient.                                                                                                                                                                   |
| 9-4    | NONLINEAR<br>FLOW 2 | W | 0.01~100000 | m³/h | 1.0000 | The second correction point.                                                                                                                                                                             |
| 9-5    | NONLINEAR<br>COE 2  | W | 0.5~1.5     | 1    | 1.0000 | Second correction point<br>coefficient.                                                                                                                                                                  |
| 9-6    | NONLINEAR<br>FLOW 3 | W | 0.01~100000 | m³/h | 1.0000 | The third correction point.                                                                                                                                                                              |
| 9-7    | NONLINEAR<br>COE 3  | W | 0.5~1.5     | 1    | 1.0000 | The third correction point coefficient.                                                                                                                                                                  |
| 9-8    | NONLINEAR<br>FLOW 4 | W | 0.01~100000 | m³/h | 1.0000 | The fourth correction point.                                                                                                                                                                             |
| 9-9    | NONLINEAR<br>COE 4  | W | 0.5~1.5     | 1    | 1.0000 | The fourth correction point coefficient.                                                                                                                                                                 |
| 9-10   | NONLINEAR<br>FLOW 5 | W | 0.01~100000 | m³/h | 1.0000 | The fifth correction point.                                                                                                                                                                              |
| 9-11   | NONLINEAR<br>COE 5  | W | 0.5~1.5     | 1    | 1.0000 | The fifth correction point coefficient                                                                                                                                                                   |
| 10) 81 |                     |   |             |      |        |                                                                                                                                                                                                          |

#### 10) SYSTEM

| 10-1 | ACK LATCH              | w | 1                   | 1 | 1        | A failure can result in an<br>analog current lock that<br>can be used to confirm<br>and restore the output.                                         |
|------|------------------------|---|---------------------|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-2 | LANGUAGE               | w | Chinese.<br>English | / | Chinese. | Set the language<br>presented by the LCD<br>interface.                                                                                              |
| 10-3 | DATE AND<br>TIME       | w | 1                   | 1 | 1        | Set up the flowmeter to<br>display the current time<br>and date.                                                                                    |
| 10-4 | NEW READ<br>PWD        | W | 1                   | 1 | 1        | Password modification.                                                                                                                              |
| 10-5 | SOFTWARE<br>VERSION    | R | 1                   | 1 | 1        | Built-in software version number of flowmeter.                                                                                                      |
| 10-6 | RESTORE<br>FACTORY SET | w | 1                   | / | /        | Restore the default<br>parameters of the<br>system, clear all factory<br>configuration parameters<br>and user setting<br>parameters.                |
| 10-7 | RESTORE<br>SENSOR SET  | w | 1                   | 1 | 1        | All parameter<br>configurations are<br>restored to the factory<br>default configuration, and<br>further prompt whether to<br>continue the recovery. |

outage stops.

| 10-8 | ENABLE<br>WRITE      | W | /              | 1 | 1 | Sensor configuration<br>(caliber, calibration<br>parameters) is restored to<br>the factory default<br>configuration, and further<br>prompt whether to<br>continue to restore.       |
|------|----------------------|---|----------------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-9 | NEW WP PWD           | W | /              | / | 1 | The parameters are<br>saved as the factory<br>default configuration, and<br>you need to be further<br>prompted whether to<br>continue saving (currently<br>only implemented in DD). |
| 11   | ) LOGS               |   |                |   |   |                                                                                                                                                                                     |
| 11-1 | PARAMETER<br>LOG     | R | 1              | / | 1 | Record the time of<br>parameter modification<br>and the data before and<br>after modification.                                                                                      |
| 11-2 | ALARM LOG            | R | 1              | 1 | 1 | Record the alarm time<br>and alarm content of the<br>instrument.                                                                                                                    |
| 11-3 | SWITCH LOG           | R | 1              | 1 | 1 | Record each boot time and downtime.                                                                                                                                                 |
| 11-4 | DAILY TOTAL<br>LOG   | R | 1              | / | 1 | Record the daily<br>accumulation over the<br>past 31 days.                                                                                                                          |
| 11-5 | MONTHLY<br>TOTAL LOG | R | 1              | / | 1 | Record the monthly accumulation over the past 24 months                                                                                                                             |
| 11-6 | WORK TIME            | R | 0∼4294967295 s | 1 | / | As soon as the converter<br>is powered on, it begins<br>to accumulate running<br>time, and the power                                                                                |

### A Important

Explanation on nonlinear correction.

• The value of the instrument correction point (1-5) is the flow before the instrument is not corrected, and it is the instantaneous flow with a correction coefficient of 1.

• When calibrating the instrument, first select the calibration point and input each calibration flow input, and then: F standard / F measurement flow correction coefficient unit.

• A line segment is used to represent the correction process, as shown in the following figure



There are two ways to determine the correction coefficient:

1) The main results are as follows: 1) the correction coefficient C of each point can be calculated by instantaneous flow rate, and the formula is: C= F standard / F measurement.

2) The corresponding instrument coefficient of each flow point has been calibrated, in which the corresponding correction point and correction coefficient are input.

•The ex-factory calibration of the circuit board has been set up before leaving the factory, and the operation process is not allowed to be changed, otherwise it will directly affect the measurement accuracy of the instrument, and if it is serious, the instrument will not be displayed.

# M Important

Explanation of excitation frequency.

This parameter is used to set the frequency of the excitation drive in the excitation drive module.

| Excitation | Application description                                                  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|--|--|--|--|--|
| frequency  | Application description                                                  |  |  |  |  |  |
| 3.125 Hz   | The lower the excitation frequency is, the higher the zero stability is. |  |  |  |  |  |
| 6.25 Hz    | and on the contrary, the stronger the anti-interference ability of the   |  |  |  |  |  |
| 12.5 Hz    | instrument is. At the same time, high frequency excitation should be     |  |  |  |  |  |
| 25 Hz      | selected when measuring slurry.                                          |  |  |  |  |  |



# **Chapter 8 Practical operation**

The user installs the sensor into the working pipeline to complete the input / output terminal wiring. Then set the required parameters and complete the zero adjustment before operation. After the fluid measurement begins, the counting electromagnetic Flowmeter terminal outputs an accurate flow signal. This chapter describes the zeroing operation and the corresponding process.

### 8.1 Zero setting before operation

Zero setting ensures that when the pipe is full of zero flow, the flow indication value is zero and the output current is (4~20) mA,4mA. The factory zeroing is carried out before the instrument is delivered, but in order to match the electromagnetic flowmeter with the working environment, the zeroing must be carried out again after the pipeline is installed in place. This section will describe how to set zeros automatically and manually. At the same time, one of the methods should be selected to complete the zero adjustment.

🛕 Important

•Zeroing is carried out before the actual operation of the instrument. It should be noted that during the automatic zeroing period (180 seconds), the user cannot automatically set and update the function.

•The user can fill the sensor with liquid (that is, the full tube state) and zero when the fluid velocity is 00:00.

•When the user changes the type of fluid measured, the instrument needs to be re-zeroed immediately.

•Adjust 00:00 to make sure that the ground is in good condition.

#### 8.1.1 Use the automatic zeroing function

This section describes how to use the automatic zeroing function for zeroing operations.





#### 8.1.2 Zero operation by manual input

This chapter describes in detail the steps of manual input for zeroing operation, the specific steps are as follows:



### 8.2 Batch canning function

Electromagnetic flowmeter has the function of batch canning, which is characterized by fast response and high precision, so it is suitable for most canning occasions. The specific operations are as follows:

#### 8.2.1 Wiring

Follow the wiring diagram to connect the relay output terminal to the controller or solenoid valve. If it is a batch external start-up, you need to connect the external switch and the contact input

#### terminal at the same time.







Figure 8.2.2 status input connection

#### 8.2.2 Parameter setting

1) Set [Relay output] to batch control output, and turn on batch canning function at the same time.

2) Set the [batch alarm value] volume to the volume that needs to be canned.

3) When the [DI configuration] value is set to batch zero, and the [valve opening delay setting] is

0, batch external startup is enabled.

4) If the [DI configuration] value is not batch zero, and the [valve opening delay setting] is greater than 0, enable batch delay startup.

#### 8.2.3 Work procedure

1) Finish setting the parameters and start canning.

2) When the tank volume reaches the set value, the relay outputs and closes the valve.

3) If it is a batch external start, contact input is required to clear the tank volume, then you can reset the relay and start the next canning; if the start batch delay, after the time set in the [Open Valve delay setting] menu, the canning volume will be cleared, the relay will be reset and the next canning will be started.

# **Chapter 9 Communications**

### 9.1 RS485 Modbus communication

When the network is connected, the communication between multiple electromagnetic flowmeters and computers can be completed through a communication bus.

Then the electromagnetic flowmeter is used to convert the measured flow signals into digital signals to be sent. Using MODBUS protocol, a total of 255instruments can be connected on the network.

The use of multipoint communication needs to take into account the update rate of data and the distance between transmissions.

The advantage of communication between multiple points is that it is safe and reliable, and it can still run reliably in those situations with high security requirements.

The communication between the computer and the flowmeter needs to use the RS232/RS485 interface converter, and each flowmeter has a unique address for communication and addressing.

Figure 9.1.1 mainly shows a typical network connection diagram, this diagram is not an installation diagram, if you have any other questions, please call us.



Figure 9.1.1 typical network connection

### 9.2 Electromagnetic flowmeter uses Modbus RTU communication

#### protocol

For more information, please refer to "Modicon Modbus Protocol Reference Guide".

#### 9.2.1 Query

| Byte serial<br>number | Command byte<br>example | Notes                                               |  |  |
|-----------------------|-------------------------|-----------------------------------------------------|--|--|
| 4                     | 01                      | Instrument number, mailing address of slave, single |  |  |
|                       | UT                      | byte.                                               |  |  |
| 2                     | 03                      | 03H in function code indicates query operation.     |  |  |
|                       | 00                      | The high-order byte of the starting address of the  |  |  |
| 3                     | 00                      | query parameter                                     |  |  |
| 4                     | 00                      | The low byte of the starting address of the query   |  |  |
| 4                     | 00                      | parameter.                                          |  |  |
| 5                     | 00                      | High-order bytes of the number of query parameters. |  |  |
| 6                     | 02                      | The low byte of the number of query parameters.     |  |  |
| 7                     | 64                      | The high-order byte of the CRC check code (16 bits) |  |  |
|                       | C4                      | of this frame.                                      |  |  |
| 0                     | 0.P                     | The low byte of the CRC parity check code of this   |  |  |
| ð                     | UB                      | frame                                               |  |  |

•Send frame structure when computer query

Example: query the net cumulative flow value, and then the computer sends the following frame 01 03 00 00 00 02 C4 0B

| Byte serial<br>number | Command byte example | Notes                                           |
|-----------------------|----------------------|-------------------------------------------------|
| 1                     | 01                   | Instrument number, that is, slave communication |
| I                     | 01                   | address.                                        |
| 2                     | 03                   | Function code.                                  |
| 3                     | 04                   | Data byte count.                                |
| 4                     | AF                   | Data high order H0.                             |
| 5                     | D5                   | Data low L0.                                    |
| 6                     | 00                   | Data high bit H1.                               |
| 7                     | 1E                   | Data low L1.                                    |
| 8                     | 4A                   | CRC check high bit.                             |
| 9                     | D7                   | CRC check low bit                               |

•Response frame structure of instrument

Example: the accumulated flow value of the meter is: 2011093 m<sup>3</sup>.

The floating-point number 2011093 is expressed in the instrument as:

0x00mem0x1Ere0xAFre0xD5.

Corresponding to H1 L1 H0 L0.

For the transmission order, see the reply frame structure, where the specific data for transmission is as follows:

#### 01 03 04 AF D5 00 1E 4A D7.

Communication format: baud rate 9600, 1 start bit, 8 data bits, no parity, 1 stop bit.

•CRC Cyclic redundancy check

The cyclic redundancy check CRC area is 2 bytes, which contains a 16-bit binary data. The CRC value is calculated by the sending device, and then the calculated value is attached to the information. The device needs to recalculate the CRC value when receiving the information, and then compares the calculated value with the actual value in the received CRC area. If the two are not the same, an error is generated.

CRC starts by setting all 16 bits of the register to "1" and putting two adjacent 8-bit bytes of data into the current register. The 8-bit data of each character is used as the CRC start bit, and the stop bit and parity bit are not added to the CRC. During the generation of CRC, every 8 bits of data is XOR with the value in the register, the result is moved one bit to the right (toward LSB), and fill in "MSB" with "0".

Then the LSB is detected if the LSB is "1", it is XOR with the preset fixed value, and if the LSB is "0", no XOR is performed. The above process is then repeated until the shift is 8 times, and after all the shifts are completed, the next 8-bit data is carried on. XOR with the current value of the register, after all the information has been processed, the final value in the register is the CRC value.

The process of generating CRC:

Set the 16-bit CRC register to 0xFFFF.

1) The first 8-bit data is XOR with the lower 8 bits of the CRC register, and then the result is put into the CRC register.

2) Move the CRC register one bit to the right, fill in the MSB zero, and check the LSB.

4) (If LSB is 0): repeat 3 and move one bit to the right.

(If LSB is 1): the CRC register performs XOR operations with 0xA001H.

5) Repeat 3 and 4 until 8 shifts, 8-bit bytes are processed.

6) Repeat 2 to 5 to process the next 8-bit data until all bytes have been processed.

7) The final value of the CRC register is the CRC value.

8) When the CRC value is put into the information, the high 8 bits and the low 8 bits are placed separately.

9.2.2 Correspondence address table for each parameter

| Unit name                | Mailing<br>address | Data type            | Length<br>(bytes) | Storage<br>format | Unit |
|--------------------------|--------------------|----------------------|-------------------|-------------------|------|
| Net cumulative flow      | 00                 | Floating point type. | 4                 | H1,L1,H0,L<br>0   | m³   |
| Forward cumulative flow. | 02                 | Floating point type. | 4                 | H1,L1,H0,L<br>0   | m³   |
| Reverse cumulative flow  | 04                 | Floating point type. | 4                 | H1,L1,H0,L<br>0   | m³   |
| Instantaneous flow       | 06                 | Floating point type  | 4                 | H1,L1,H0,L<br>0   | /    |

### 9.3 HART

#### 9.3.1 HART communication

HART is a registered trademark of the HART Communications Foundation, and then according to the specifications for the use of HART, refer to the corresponding version of technical materials issued by the HART Foundation.

Then, to connect the flowmeter using the HART configuration tool, you need to verify that the DD of the electromagnetic flowmeter is correctly installed in the configuration tool.

For cases where DD has not been installed correctly, the device may not be recognized.

Therefore, general instruction parameters are required to communicate normally, while special instructions cannot be supported.

Can not use most of the functions of the instrument, the equipment DD file can be downloaded from the official HART website, and then contact our company for updated information.

The electromagnetic flowmeter supports HART7.

Verify that the flowmeter matches the DD version of the configuration tool on site and install the following actions:

•Confirm the DD version of the electromagnetic flowmeter:

Connect the electromagnetic flowmeter with the configuration tool, and operate the configuration tool Device Setup- > Field Device- > Revision- > Field Device Rev to obtain the equipment version information.

•HART configuration tool device version confirmation:

Open the configuration tool without connecting the device and confirm according to the procedure of the configuration tool to check the DD version of the device.

To confirm that the built-in DD version matches, please refer to the operation manual of the appropriate configuration tool. The HART configuration tool can be connected to the flowmeter in the control room, to the flowmeter site, or to any other terminal in the circuit.

When connecting with the HART configuration tool, the current output circuit must be equipped with a load resistance of 250  $\Omega \sim 600 \Omega$ , and the configuration tool is connected in parallel with the instrument, and the connection mode is non-polar. Multipoint mode can be used when multiple field instruments need to be connected. To enable multipoint mode, the field instrument address needs to be set to any value between 1 and 63, but cannot be repeated. In multipoint mode, the (4~20) mA analog output is fixed at 4 mA.

#### 9.3.2 Parameter configuration

The parameter structure of HART is tree structure, which is detailed in 9.3.3.

Affected by software version updates, the data displayed in the menu tree may not be completely consistent with the display parameters of the monitor.

For HART configuration, the parameter display language is English only, even if the language option is set to a non-English option, but only English is displayed in the HART configuration tool. It should be noted that the communication process of the HART configuration tool avoids setting parameters of the display screen and buttons.

When using HART to configure basic and detailed settings, please refer carefully to Chapter 6 parameters instructions.

•Calibrate 4 mA and 20 mA analog output:

The calibration ammeter that meets the accuracy requirements is configured with tool settings->

www.supmea.com

diagnosis / service-> adjustment-> DAC\_TRIM, and the 4 mA and 20 mA calibrated ammeter readings are input successively to complete the analog output calibration.

•Set the flowmeter to zero:

Ensure that the flowmeter is in full-tube state, the actual flow is 0, configure the tool device setting-> diagnosis / service-> adjustment-> zero adjustment, wait for the display setting countdown to end, complete the zero setting; according to the use experience, the flowmeter zero point is known, configure tool device setting-> diagnosis / service-> adjustment-> PV zero, enter the zero value, complete the zero adjustment.

•Device write protection:

The flowmeter can be write-protected or released by the HART tool.

The configuration tool Device Setup- > Diag/Service- > Write Protect- > lock\_unlock\_device can be locked or unlocked.

Write protection status can be viewed through WP status.

After write protection is unprotected, display browse and modify permissions are temporarily turned on.

After the HART tool configuration is complete, it is recommended that the flowmeter be locked. flowmeter analog and digital input and output can be tested by HART configuration tool.

•Current output test:

The analog output is connected to the ammeter and the configuration tool Device Setup (device Settings)-> Diag/Service (Diagnostics / Services)-> Output Test (output Test).

TRANSPONER\_LOOP\_TEST, set the test current value and observe whether the ammeter display value is consistent.

•Status input and output test:

First of all, you need to open the test mode, configure the tool device settings-> Diagnostics / Services-> output Test-> Test mode. After enabling the test mode, select DO in the device Settings-> detailed Settings-> function-> status function-> DO function to output the pulse, and set the test pulse to an appropriate value (less than 10 KHz, pulse width is required).

The frequency meter or oscilloscope is used on the DO interface to monitor whether the output pulse frequency is correct.

Configure the DO as the state output, set the test DO and the test relay output to high and low levels respectively, and measure the level state changes or switches on the DO interface and the relay interface, respectively.

#### 9.3.3 DD menu

The HART communication parameters of the electromagnetic flowmeter completely cover almost all the contents of the liquid crystal display. Subsequently, it is easier to browse or modify the flowmeter parameters by using the HART configuration tool.

| OnLine Rootmenu   |                                             |  |  |  |  |  |
|-------------------|---------------------------------------------|--|--|--|--|--|
| 1.Device<br>setup | Device Settin.                              |  |  |  |  |  |
| 2.PV              | Master variable:<br>instantaneous flow.     |  |  |  |  |  |
| 3.PV.AO           | Current output value of principal variable. |  |  |  |  |  |
| 4.PV Span         | Principal variable range                    |  |  |  |  |  |

| 1.Device<br>setup | 1.Process Varibles | Process variable.         |                                         |                            |
|-------------------|--------------------|---------------------------|-----------------------------------------|----------------------------|
|                   | 2.Diag/Service     | Diagnosis and adjustment. |                                         |                            |
|                   | 3.Basic Setup      | Basic settings.           |                                         |                            |
|                   | 4.Detailed Setup   | Detailed settings.        |                                         |                            |
|                   | 5.Review           | Review                    |                                         |                            |
|                   |                    |                           |                                         |                            |
|                   | 1.Process Varibles | 1 PV                      | Master variable: instantaneous<br>flow. |                            |
|                   |                    | 2 PV % Range              | Principal variable range ratio.         |                            |
|                   |                    | 3 PV.AO                   | Current output value.                   |                            |
|                   |                    | 4 FLow Velocity           | Velocity of flow.                       |                            |
|                   |                    | 5 Total                   | Positive cumulant.                      |                            |
|                   |                    | 6 Pos_OverflowCount       | Positive cumulative spillover times.    |                            |
|                   |                    | 7 Reverse Total           | Reverse cumulant.                       |                            |
|                   |                    | 8 Rev_OverflowCount       | Reverse cumulative overflow<br>times    |                            |
|                   |                    |                           |                                         |                            |
| 2.Diag/Service    |                    |                           | 1 Status0                               | System alarm<br>status.    |
|                   |                    | 1.Status                  | 2 Status1                               | Process alarm<br>status.   |
|                   |                    |                           | 3 Status2                               | General alarm<br>status.   |
|                   |                    |                           | 4 Device Status                         | Equipment<br>status.       |
|                   |                    |                           | 5 Extended_fld_device_status            | Extend device<br>statu.    |
|                   |                    |                           | 1 DAC_trim                              | (420) mA<br>calibration.   |
|                   |                    | 2.Adjustment              | 2 Zero_trim                             | Zero setting.              |
|                   |                    |                           | 3 PV Zero                               | Zero setting.              |
|                   |                    |                           | 1Loop_current_mode                      | Loop current<br>mode       |
|                   |                    |                           | 2 Transmitter_loop_test                 | Current test.              |
|                   |                    |                           | 3 AO_Damping                            | Current output<br>damping. |
|                   |                    | 3.Output Test             | 4 Test Mode                             | Test mode<br>switch.       |
|                   |                    |                           | 5 Test DO                               | DO test.                   |
|                   |                    |                           | 6 Test Relay                            | Relay test.                |
|                   |                    |                           | 7 Test Pulse                            | Pulse test                 |
|                   |                    | 4 SelfTest                | 1 Selftest                              | Device self-test.          |
|                   |                    |                           | 2 Sevice_reset                          | Device restart.            |
|                   |                    | E Sove and restore        | 1 Reset_totalizer                       | Reset<br>accumulator.      |
|                   |                    | o.oave and restore        | 2 reset corrects sensor                 | Restore sensor settings.   |

|                  |                     | 3 Save factory                       | Save factory settings.       |
|------------------|---------------------|--------------------------------------|------------------------------|
|                  |                     | 4 Restore factory                    | Restore factory settings.    |
|                  |                     | 1 WP Status                          | Write protection statu.      |
|                  | 6 Write Protect     | 2 lock_unlock_device                 | Lock / unlock.               |
|                  |                     | 3 New Read Password                  | Browse<br>password.          |
|                  |                     | 4 New Set Password                   | Write a protection password  |
|                  | applied_rerange     | Range upper and lower limit setting. |                              |
|                  | acknowledge_latch   | Fault latc confirmation              |                              |
|                  |                     |                                      |                              |
| 3.Basic Setup    | 1 Tag               |                                      |                              |
|                  | 2 Long Tag          |                                      |                              |
|                  | 3 Language          | Language.                            |                              |
|                  | 4 PV Span           | Flow range.                          |                              |
|                  | 5 Flow Low Cut      | Low flow rate resection.             |                              |
|                  | 6 PV Damping        | Damping time.                        |                              |
|                  | 7 Flow Direction    | Fluid direction.                     |                              |
|                  | 8 Fluid Density     | Fluid density.                       |                              |
|                  | 9 Flow Unit         | Flow unit.                           |                              |
|                  | 10 Total Unit       | Cumulative unit.                     |                              |
|                  | 11 Velocity Unit    | Flow rate unit.                      |                              |
|                  | 12 Total Decimal    | Cumulative number of decimal places. |                              |
|                  | 13 VolMax           | Maximum cumulative value             |                              |
|                  | 14 Totalizer ON/OFF | Accumulator option                   |                              |
|                  |                     | 1 Cust Flow Unit Sel                 | Custom flow<br>unit.         |
|                  |                     | 2 Cust Flow Unit                     | User flow unit               |
|                  |                     |                                      |                              |
|                  | 15 CUSTOM Unit      | 3 CustFlowUnitCOE                    | Flow unit coefficient.       |
|                  |                     | 4 CustTotUnitSel                     | Custom<br>cumulative unit.   |
|                  |                     | 5 CustTotUnit                        | User cumulative unit.        |
|                  |                     | 6 CustTotUnitCOE                     | Cumulative unit coefficient. |
| 4.Detailed Setup |                     | 1 Nominal Size                       | Nominal caliber.             |
|                  |                     | 2 Meter Factor                       | Instrument coefficient.      |
|                  |                     | 3 Total                              | Positive<br>cumulant.        |
|                  | 1.Measurement       | 4 Reverse Total                      | Reverse<br>cumulant.         |
|                  |                     | 5 Flow Hold Time                     | flow response<br>time.       |
|                  |                     | 6 Rate Limit                         | Flow fluctuation             |
|                  |                     | 7 Noise Limit                        | Noise limitation             |

|  |               | 8 Noise Damping         | Noise suppression rate. |                                         |
|--|---------------|-------------------------|-------------------------|-----------------------------------------|
|  | 1.Measurement | 9 Excit Frequency       | Excitation frequency.   |                                         |
|  |               | 10 Excit Current        | Excitation current.     |                                         |
|  |               | 11 Gain Lock            | Small gain locking.     |                                         |
|  | 1.Measurement |                         | 1 Nonlinear Option.     | Nonlinear correction switch.            |
|  | -             |                         | 2 Nonlinear Flow 1.     | Nonlinear modified flow 1.              |
|  |               | 12 Nonlinear correction |                         | Nonlinear modified flow 5.              |
|  |               |                         | 10 Nonlinear Flow 5.    | Nonlinear correction coefficient 5.     |
|  |               |                         | 11 Nonlinear COE 5.     | DO configuration.                       |
|  |               | 1 Pulse Unit            | Pulse unit.             | DI configuration.                       |
|  | 2.Pulse       | 2 Pulse Scale           | Pulse equivalent.       | Relay output.                           |
|  |               | 3 Pulse Width           | Pulse width             | Upper limit alarm value.                |
|  |               |                         | 1 DO Function           | Lower limit alarm value.                |
|  |               | 1 Status Function       | 2 DI Function           | Upper and lower limit alarm lag.        |
|  |               |                         | 3 Relay Function        | Batch alarm value.                      |
|  |               |                         | 1 High Alarm            | Valve opening delay setting.            |
|  |               |                         | 2 Low Alarm             | Air flow control alarm switch.          |
|  |               |                         | 3 H/L ALARM HYS         | Air flow control threshold.             |
|  |               |                         | 4 Batch Alarm           | NAMUR option.                           |
|  |               | 2 Alarm                 | 5 Batch Reset Delay     | NAMUR alarm level.                      |
|  |               |                         | 6 Empty Alarm           | Fault latch.                            |
|  |               |                         | 7 Empty Threshold       | Mailing address.                        |
|  |               |                         | 8 NamurEN               | Baud rate.                              |
|  |               |                         | 9 NamurSel Level        | Check bit.                              |
|  | 3.Function    |                         | 10 Latch Option         | Alarm message serial number.            |
|  | •             |                         | 1 ComAdress             | Alarm status.                           |
|  | -             | 3 RS485                 | 2 BaudRate              | Alarm time.                             |
|  |               |                         | 3 Parity                | Parameter modification sequence number. |
|  |               |                         | 1 WarningNO             | Parameters.                             |
|  |               | 4 Alarm record          | 2 WarningStatus         | Modification time.                      |
|  | -             |                         | 3 WarningDate           | Pre-modified value.                     |
|  |               |                         | 1 RecordNO              | Modified value                          |
|  |               |                         | 2 RecordCode            | Nonlinear correction switch.            |
|  |               | 5 Parm record           | 3 RecordDate            | Nonlinear modified flow 1.              |
|  |               |                         | 4 ParmOld               | Nonlinear modified flow 5.              |
|  |               |                         | 5 ParmNew               | Nonlinear correction coefficient 5.     |
|  |               |                         |                         |                                         |

|          | 4.11                               | 1 Polling Addr              |                    |  |
|----------|------------------------------------|-----------------------------|--------------------|--|
|          | -4.Hart 2                          | 2 Num Req Preams            |                    |  |
|          |                                    | 1 Manufacturer              |                    |  |
|          |                                    | 2 private_label_distributor |                    |  |
|          | 5.Field Device 8 [<br>9 N<br>10    | 3 Device Type               |                    |  |
|          |                                    | 4 Device ID                 |                    |  |
|          |                                    | 5 Tag                       |                    |  |
|          |                                    | 6 longTag                   |                    |  |
|          |                                    | 7 Date                      |                    |  |
|          |                                    | 8 Descriptor                |                    |  |
|          |                                    | 9 Message                   |                    |  |
|          |                                    | 10 final_assembly_number    |                    |  |
|          |                                    |                             | 1 Universal Rev    |  |
|          | 11                                 |                             | 2 Field Device Rev |  |
|          |                                    | TT Revision                 | 3 Software Rev     |  |
|          |                                    |                             | 4 hardware Rev     |  |
| 5.Review | 1 workHours                        | Instrument working time.    |                    |  |
|          | 2 PowerReset CNT                   | Start and stop count        |                    |  |
|          | 3 Device Type                      |                             |                    |  |
|          | 4<br>private_label_distributo<br>r |                             |                    |  |
|          | 5 Device ID                        |                             |                    |  |
|          | 6<br>config_change_counte<br>r     |                             |                    |  |
|          | 7 Tag                              |                             |                    |  |
|          | 8 Long Tag                         |                             |                    |  |
|          | 9 Description                      |                             |                    |  |
|          | 10 Message                         |                             |                    |  |
|          | 11 Date                            |                             |                    |  |
|          | 12<br>final_assembly_numbe<br>r    |                             |                    |  |
|          | 13 universal_revision              |                             |                    |  |
|          | 14 transmitter_revision            |                             |                    |  |
|          | 15 software_revision               |                             |                    |  |
|          | 16 polling_address                 |                             |                    |  |
|          | 17 loop_current_mode               |                             |                    |  |
|          | 18 request_preambles               |                             |                    |  |

# **Chapter 10 Overview**

# 10.1 Standard technical specification

#### Converter

| Category                        |                               | Technical parameters                                                                                | Remarks                                               |
|---------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Excitation<br>mode              | Excitation<br>frequency       | Users need to choose excitation<br>frequency and excitation current<br>according to different media | Users need to<br>choose excitation<br>frequency and   |
|                                 | Excitation current.           | 125mA、200mA                                                                                         | excitation current<br>according to<br>different media |
| Input                           | Unidirectional input.         | Passive dry contact.                                                                                |                                                       |
| Signal                          | Load<br>resistance.           | Less than or equal to 750 $\Omega$ (ON), greater than or equal to 100K $\Omega$ (OFF)               |                                                       |
|                                 | Current<br>output.            | DC current (4 to 20) mA (load resistance: 0,750 $\Omega$ , including cable resistance)              |                                                       |
| Output<br>signal                | Pulse<br>frequency<br>output. | Voltage 30V, pulse output rate<br>0.0001mm 10000 pps / s, short circuit<br>protection               |                                                       |
|                                 | Relay output                  | 250V.AC/3A, 30V.DC/3A                                                                               |                                                       |
| RS485 communication             |                               | Communication distance is less than 1km                                                             |                                                       |
| Power failure, data<br>security |                               | Data (such as parameters, cumulative values, etc.) are stored by non-volatile FRAM                  |                                                       |
| Display device                  |                               | Lattice LCD screen: 128 × 64, yellow and green backlight                                            |                                                       |
| Converter                       | protection level              | IP67                                                                                                |                                                       |
| Shell mate                      | rial                          | Aluminum alloy                                                                                      |                                                       |
| Shell coating                   |                               | Anticorrosive polyurethane, blue / white                                                            |                                                       |
| Electrical interface            |                               | M20 × 1.5 internal thread, $\phi$ 10 cable<br>hole, other connection forms<br>customized            |                                                       |
| Ambient temperature             |                               | -20 °C ~ 70 °C                                                                                      |                                                       |
| Grounding requirement           |                               | Grounding resistance $\leq 10 \Omega$                                                               |                                                       |

#### Sensor

| Category                |               | egory                   | Technical parameters                                  | Note                                                                            |  |
|-------------------------|---------------|-------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Electrode material      |               | erial                   | 316L, HC, HB, Ti, Ta, Pt, tungsten carbide, etc.      |                                                                                 |  |
| Lining mate             | erial         |                         | PFA/F46, PTFE, neoprene                               |                                                                                 |  |
|                         | DN            | 18~DN50                 | GB/T9119 PN40                                         |                                                                                 |  |
|                         | DN            | 165~DN200               | GB/T9119 PN16                                         |                                                                                 |  |
| Flange                  | DN            | 1250~DN600              | GB/T9119 PN10                                         | Other standards and pressure                                                    |  |
| standard                | DN            | 1700~DN1200             | JB/T81 PN6                                            | grades are<br>customized                                                        |  |
|                         | DN            | 1400~DN2000             | JB/T81 PN2.5                                          |                                                                                 |  |
|                         | DN2200~DN3000 |                         | GB/T9115 PN2.5                                        |                                                                                 |  |
| Medium working pressure |               | ig pressure             | No more than the flange, that is, the pressure level. |                                                                                 |  |
|                         |               | PTFE                    | -35℃~120℃                                             | Allow high<br>temperature steam                                                 |  |
| Medium<br>temperature.  |               | PFA/F46                 | <b>-35℃~140℃</b>                                      | to purge for 40<br>minutes, and the<br>temperature is not<br>higher than 150 °C |  |
|                         |               | Neoprene<br>rubber      | -5℃~65℃                                               |                                                                                 |  |
| Protection<br>grade     |               | Integrated installation | IP67                                                  |                                                                                 |  |
|                         |               | remote<br>installation  | IP67、IP68                                             | IP68 (under water<br>less than 5 meters)<br>is limited to<br>neoprene           |  |
| Body mate               | rial          |                         | Carbon steel, stainless steel                         |                                                                                 |  |

Note:

1) the sensor is used with the converter.

2) when the type of the converter changes, the instrument coefficient needs to be redetermined.

#### Function

| Function          | Function description                                                                                                                             | Note |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Parameter setting | The user sets the parameters through three infrared buttons without opening the cover.                                                           |      |
| Display language  | Support for display modes in both Chinese and English.                                                                                           |      |
| LCD               | Instantaneous flow, flow percentage and flow progress bar, forward and reverse accumulation, signal quality, running status, flow rate, time and |      |

|                                             | date, etc.                                                                                                                                                                                                                                                            |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Damping                                     | The damping time can be set between 0.1s and 200s.                                                                                                                                                                                                                    |  |
| Unit setting                                | Support cumulative units m <sup>3</sup> , L, t, kg, gal, lb, ft3, time units s, min, h, day. flow units can be any combination of the above units.                                                                                                                    |  |
| Pulse output                                | Pulse width: 50% duty cycle, 0. 05, 0. 1, 0. 1, 20,<br>50, 100 Ms.<br>Pulse equivalent: 1: 1000.<br>Pulse rate: 0.0001~10000pps                                                                                                                                       |  |
| Communication<br>Settings                   | The communication setting function can select<br>baud rate, parity bit and data format.<br>Baud rate: 2400, 4800, 9600.<br>Parity bits: none, odd parity, even parity                                                                                                 |  |
| Two-way<br>measurement                      | Both forward and reverse flow can be measured.                                                                                                                                                                                                                        |  |
| Batch canning                               | When the accumulation reaches the preset value,<br>the alarm will be given through digital output or<br>relay output.                                                                                                                                                 |  |
| Preset cumulative value                     | The parameter setting or status input function requires that the cumulative amount be preset to a set value or zero.                                                                                                                                                  |  |
| Alarm selection<br>function                 | Alarm is divided into system alarm, process alarm<br>(such as "empty tube", "off excitation"), setting<br>alarm and warning. The user independently<br>chooses whether or not to alarm each item.                                                                     |  |
| Alarm output                                | The alarm items selected by the alarm selection function will output the status if there is a fault.                                                                                                                                                                  |  |
| Self-diagnosis                              | When an alarm appears, the alarm content will be displayed.                                                                                                                                                                                                           |  |
| High/low flow<br>alarm                      | Alarm can be given when the flow is greater than<br>or less than the set value. In addition, set an<br>upper limit and a lower limit.<br>When the flow is greater than the upper limit or<br>less than the lower limit, the alarm is output.                          |  |
| Signal quality<br>diagnosis function        | This function allows you to monitor the degree of<br>stickiness of electrodes and insulating materials,<br>depending on the state of stickiness. At the same<br>time, the alarm is carried out in the state output,<br>and the electrode is cleaned at the same time. |  |
| Slurry<br>measurement<br>function           | Setting the excitation frequency 25Hz, it can measure slurry, coal slurry, slurry, mortar, paper pulp and so on.                                                                                                                                                      |  |
| Low conductivity<br>measurement<br>function | The liquid whose conductivity is as low as 5 $\mu$ S / cm can be measured by setting the excitation frequency 25Hz.                                                                                                                                                   |  |

### **10.2 Performance**

•Standard working condition

|             | Measurement of Conductive liquid     |              | 30 minutes.        |
|-------------|--------------------------------------|--------------|--------------------|
|             | flow in GB/T 18659 closed Pipeline   | Preheating   |                    |
| Deference   | and performance Evaluation method    | time         |                    |
| standard    | of electromagnetic flowmeter.        |              |                    |
|             | Measurement of Conductive liquid     |              | Upstream > 10D,    |
|             | flow in GB/T 18660 closed Pipeline   |              | downstream > 5D.   |
|             | and use of electromagnetic flowmeter |              |                    |
| Fluid       | 20%2+10%2                            | Grounding    | Correct grounding. |
| temperature | 2001100                              | requirement  |                    |
| Ambient     |                                      | Installation | Determining the    |
| temperature |                                      | requirements | center             |

•Accuracy level (refer to standard operating conditions).

•Standard accuracy level (pulse output):



Note: the current output corresponds to the accuracy, that is, the pulse output accuracy plus 0.05% of the flow rate.

•Extended accuracy level (pulse output):





Note: the current output corresponds to the accuracy, that is, the pulse output accuracy plus 0.05% of the flow rate.

•Measurable velocity range:-12m/s~12 mhand s.

•Maximum power consumption: 30VA.

Insulation resistance.

The resistance between the power terminal and the grounding terminal is greater than 100m  $\Omega$  / 500V DC.

The resistance between the power terminal and each input / output / excitation terminal is greater than 100m  $\Omega$  / 500V DC.

The resistance between the ground terminal and each input / output / excitation terminal is greater than 20m  $\Omega$  / 100V DC.

•The resistance between each input / output / excitation terminal is greater than 20m  $\Omega$  / 100VDC.

Insulation strength

If the flowmeter does not work, it can withstand the sinusoidal AC test voltage specified in the following table. The voltage frequency is 50Hz, the leakage alarm is 10mA, and the insulation strength test of 1min takes place, and there are no phenomena such as breakdown and flying arc.

| _         |                                                                                                                 | Test voltage (RMS)         |                            |  |
|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--|
| Types     | Test terminal                                                                                                   | Ac power supply: 220V 50Hz | DC power supply:<br>18~30V |  |
| Sensor.   | Excitation terminal<br>and housing.<br>Electrode terminal<br>and housing.<br>Electrode terminal<br>and housing. | 500V                       | 500V                       |  |
| Converter | Power terminal and housing                                                                                      | 1500V                      | 500∨                       |  |

# \land Note

The following precautions should be followed when conducting insulation resistance tests or voltage withstand tests:

•When the relevant test is completed, the power supply needs to be cut off for more than 10 minutes before the cover can be removed.

•All wires on the terminal need to be removed before testing.

•After the test, use the discharge resistance to discharge, and then put all wires and short-circuit rods back to the correct position.

- •Tighten the cover anti-loosening screw with a torque of 1.18N m.
- •The power supply can not be supplied until the watch cover is closed.

### 10.3 Normal operating environment

| Ambient temperature                        |                     | -20℃~70℃                                                                                                                 | Rated AC voltage                           | 85V. 265V. Ac 50 Hz<br>(operating voltage range:<br>85~265V.AC).                                                                       |
|--------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Operating temperature range of the monitor |                     | -20℃~80℃                                                                                                                 | Rated DC voltage                           | 24V.DC (operating voltage range: 18~30V.DC).                                                                                           |
|                                            | PTFE                | Vibration condition                                                                                                      |                                            | The vibration level should<br>conform to IEC60068-2-6<br>(SAMA31.1) $\leq$ 1G<br>(frequency $\leq$ 500Hz).<br>Note: do not install the |
| Medium<br>temperature                      | PFA/F46             | -35℃~140℃                                                                                                                | The vibration level                        |                                                                                                                                        |
|                                            | Neoprene<br>rubber. | <b>-5℃~65℃</b>                                                                                                           | IEC60068-2-6                               |                                                                                                                                        |
| Ambient humidity                           |                     | $0 \sim 100\%$ RH.Do not<br>place this meter in an<br>environment where the<br>relative humidity is<br>greater than 95%. | (SAMA31.1) ≤ 1G<br>(frequency ≤<br>500Hz). | equipment on the ground<br>with large vibration<br>(vibration frequency ≥<br>500Hz), otherwise the<br>equipment will be damaged.       |

### 10.4 Measurement range

| Caliber (mm) | Precision flow range |      | Measurable flow range |      |
|--------------|----------------------|------|-----------------------|------|
|              | (m³/n)               |      | (m³/h)                |      |
| 8            | 0.07                 | 2.17 | 0.004                 | 2.17 |
| 10           | 0.1                  | 3.4  | 0.01                  | 3.4  |
| 15           | 0.3                  | 7.6  | 0.01                  | 7.6  |
| 20           | 0.5                  | 14   | 0.02                  | 14   |
| 25           | 0.7                  | 21   | 0.04                  | 21   |
| 32           | 1.2                  | 35   | 0.06                  | 35   |
| 40           | 1.8                  | 54   | 0.09                  | 54   |
| 50           | 2.8                  | 85   | 0.14                  | 85   |
| 65           | 4.8                  | 143  | 0.2                   | 143  |
| 80           | 7                    | 217  | 0.4                   | 217  |
| 100          | 11                   | 339  | 0.6                   | 339  |
| 125          | 18                   | 530  | 0.9                   | 530  |
| 150          | 25                   | 763  | 1.3                   | 763  |
| 200          | 45                   | 1357 | 2.3                   | 1357 |
| 250          | 71                   | 2121 | 3.5                   | 2121 |
| 300          | 102                  | 3054 | 5.1                   | 3054 |
| 350          | 139                  | 4156 | 6.9                   | 4156 |
| 400          | 181                  | 5429 | 9.0                   | 5429 |
| 450          | 229                  | 6871 | 11                    | 6871 |
| 500          | 283                  | 8482 | 14                    | 8482 |

| 600  | 407   | 12215  | 20  | 12215  |
|------|-------|--------|-----|--------|
| 700  | 554   | 16625  | 28  | 16625  |
| 800  | 724   | 21715  | 36  | 21715  |
| 900  | 916   | 27483  | 46  | 27483  |
| 1000 | 1131  | 33929  | 57  | 33929  |
| 1200 | 1629  | 48858  | 81  | 48858  |
| 1400 | 2217  | 66501  | 111 | 66501  |
| 1500 | 2545  | 76341  | 127 | 76341  |
| 1600 | 2895  | 86859  | 145 | 86859  |
| 1800 | 3664  | 109931 | 183 | 109931 |
| 2000 | 4524  | 135717 | 226 | 135717 |
| 2200 | 5474  | 164217 | 274 | 164217 |
| 2400 | 6514  | 195432 | 326 | 195432 |
| 2600 | 7645  | 229361 | 382 | 229361 |
| 2800 | 8867  | 266005 | 443 | 266005 |
| 3000 | 10179 | 305363 | 509 | 305363 |

# Chapter 11 Use, maintenance and fault diagnosis

### 11.1 Daily maintenance

Check periodically to keep the environment around the instrument clean and tidy to prevent water from entering the lead end of the instrument.

Check whether the instrument wiring is good.

1) check whether there is a strong magnetic field near the instrument.

2) regularly clean and descale the measuring tube to prevent the measuring medium from fouling the electrode and the measuring tube.

### 11.2 Fault diagnosis

The electromagnetic flowmeter seldom breaks down under normal working conditions. However, improper installation of instruments or pipes may cause flowmeter failure. First of all, it is necessary to check whether the external condition of the flowmeter is damaged, whether the cable connection is intact, whether the grid voltage is normal, whether the pipeline is leaking or is not full, and whether the insulation between the sensor excitation coil and the housing is good. Do not remove the flowmeter blindly.

The failure of electromagnetic flowmeter will be handled by professional maintenance personnel. in case of failure, please contact our company.

# Chapter 12 Warranty and after-sales service

We promise to the customer that the hardware accessories provided during the supply of the instrument have no defects in material and manufacturing process.

From the date of the purchase, if the user's notice of such defects is received during the warranty period, the company will unconditionally maintain or replace the defective products without charge, and all non customized products are guaranteed to be returned and replaced within 7 days.

Disclaimers:

•During the warranty period, product faults caused by the following reasons are not in the scope of Three Guarantees service

- •Product faults caused by improper use by customers.
- •Product faults caused by disassembling, repairing and refitting the product.

After-sales service commitment:

•We promise to deal with the customer's technical questions within 2 hours.

•For the instruments returned to the factory for maintenance, we promise to issue the test results within 3 working days and the maintenance results within 7 working days after receiving them.